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Time-Dependent Microwave Heating and
Surface Cooling of Simulated Living Tissues

FERNANDO BARDATI, MEMBER, IEEE

,4 bstrrzet— The equation of conduction of heat in a model of living

tissues is solved in the case of time-dependent electromagnetic heating and

surface cooling. This approach allows thermaf transient phenomena in the

tissue to be treated as the dynamic behavior of a linear infinite-dimension

system. This approach is appropriate when the tissue temperature increase

must be controlled. Some results are given in a numerical simulation.

INTRODUCTION

R ECENT ADVANCES in nonperturbing thermome-

try allow one to attain temperature control of tissues

subjected to electromagnetic heating in hyperthermia for

cancer treatment [ 1]– [3]. Heating is controlled by varying

the power dissipation rate in the tissue and by regulating

the temperature or the velocity of a cooling fluid [4] forced

past the surface of the body. The temperature distribution

inside the irradiated body is related to the inputs (e.g., the

microwave source power rate and the cooling fluid temper-

ature) by the differential equation of heat conduction and

appropriate boundary conditions. Usually a cooling func-

tion is added to the standard heat equation in order to take

into account the internal cooling effect of the blood circu-

lation in oioo. Transient solutions of this equation with

microwave induced heat source are available in the litera-

ture. Mainster et al. [5], Chan et al. [6], Priebe and Welch

[7] calculated the step response in biological bodies of

various geometries by the method of finite differences. In

studies on conversion of electromagnetic to acoustic energy

by volume heating, Lin [8] estimated the temperature in-

crease with time in a spherical body of biological matter

irradiated by plane waves of pulsed microwave energy;

conduction and cooling effects were neglected in his analy-

sis. In addition the time-dependent solution for a half-space

of biological matter was given by Foster et al. [4] and a

variational formulation, suitable for numerical computa-

tions in complicated geometries, was presented in [9].

To our knowledge, however, solutions of the modified

heat-conduction equation, when both the microwave heat-

ing and the surface cooling are time varying, seem to be

lacl@g in the open literature. Moreover, in order to control

the temperature increase with time in irradiated bodies, a

formal solution of the heat-conduction equation, which

relates the inputs to suitably chosen outputs (e.g., tempera-

tures at some internal points), is advisable. In this note this
relation is worked out by means of a variational formula-
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tion of the heat-conduction problem and of simplifying

assumptions. A simple application of the theory is also

given to show how some practical advantage can be ob-

tained by the use of time-varying microwave heating and

surface cooling.

MATHEMATICAL MODEL AND FORMULATION

The equation of conduction of heat in a homogeneous

volume V of tissue is [4], [9], [10]

Kv%-pc$-ll[$(r, t)–l$b(r)]= –Ao(r)–A(r, t)

(1)

where ii(r, t) is the unknown temperature, t9Jr) is the

temperature of the arterial blood entering the tissue, Ao(r)

is the metabolic heat generation per unit volume, A(r, t)is

the electromagnetic power dissipated in the unit volume of

tissue. Here K (thermal conductivity), p (density), C

(specific heat), and B are constant coefficients. The term

B( I?~ – ~) on the left-hand side accounts for the cooling

effect due to blood flow. The relation of B to primary

physical and physiological characteristics of living tissues is

discussed in [10].

The region outside V is assumed at a constant environ-

mental temperature 0,; moreover a cooling fluid at temper-

ature 19C(r, t) is supposed to be forced on a portion S’ of

the surface S of the body. By assuming linear heat transfer

at S [11], the boundary conditions are

Kv8.rz+H(8-8c)=o, on S’

Kvo.rl+H(&-l?e)=o, on S–S’ (2)

where n is the outward normal and H is a constant overall

surface heat transfer coefficient. Equation (2) differs from

the boundary condition of [10] in that a skin evaporation

term is ignored; moreover, the black-body radiation heat

loss is accounted for by simple increase of the convective

surface heat transfer coefficient. The last approximation is

sufficiently adequate only if the temperature differences in

(2) are small enough [11].

Since in this model 0,, ~~, and AO are assumed to be

time independent, it is advantageous to let

O(r, t)=i$(r)+o(r,i) (3)

where ~ and v are solutions of the following equations:

V21$-b2(J-0,)= –aO(r), in V (4a)

VT “rl+h(l$-oe)=o, . on S (4b)
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V20–(1/K)ti-b20 =-a(r, ~), in V (5a)

Vv”n+h(o–vc)=o, on S’

Vv. n+ho=o, on S–S’ (5b)

and so(r) = {A O(r)+ l?[il~(r) – ~e]}/K; a(r, t)=
A(r, t)/ K;v C(r, t)= OC(r, t)– O,; b2=B/K;
h=H/K, l/K=pC/K.

The natural temperature $(r) is that of the tissue in

absence of both electromagnetic heating and forced surface

cooling which are taken into account by the thermal in-
crease v(,r t).Formal solutions for ~(r) are given in [9].

Here we are primarily interested in solving (5a), (5b) for

t> O subject to the initial condition

o(,rO)=zf(r) (5C)

where the initial temperature U(r) is the result of former

(t<O) thermal events: u(r) =8(,rO)–$(r). a(,r t) and

oC(,r t) are assumed to be continuous for t> O. It is easy to

show that o is an extremal of the following functional:

–2j hocvdS. (6)
s’

Now let

V(r,t)= j Vm(t)fm(r) (7)
~=1

u(r)= 5 umfm(r) (8)
~=1

where ~~ is the m th orthonormal eigenfunction of the
following self-adjoint positive-definite eigenvalue problem:

V 2~+ A2~= O in V Vfn+hf=Oon S. (9)

As is known, the set of these eigenfunctions is complete.

The stationarity of F with respect to om(t),m= 1,2,. ...

gives

om+pmom(t) =sml(t)+sm2(t) (lo)

where

~n=K(~~+b2) (11)

s~l(t)=K~a(r, t) f~(r)dV (12)
v

s~2(t)=Kh~ o,(r, t) f~(r)dS. (13)
s

By taking (5c) and (8) into account, the first-order linear

system (10) has the solution

o~(t)=e–p”tzf~+
J

‘e-~m(~-~J[s~,( ~)+s~2(7)]d~.
o

(14)

Substitution of (14) into (7) yields the thermal increase

for given electromagnetic heating and forced surface cool-

ing. Note that A( r, t)=Ku(r, t) must be evaluated before

calculating the volume integral (12). A = u IE(r, t)l 2/J is

the instantaneous power dissipated in the unitary volume

of tissue, where u is the effective electrical conductivity of

the tissue, J is the mechanical equivalent of heat, and E is

the electric field which is originated inside the body by

microwave time-varying irradiation. Therefore, in order to

evaluate A, a time-varying electromagnetic field solution is

needed. Due to the complexity of the problem, few solu-

tions of this type are available in the literature. However,

an approximate expression of A can be used in the particu-

lar but relevant case where the electromagnetic irradiating

field is sinusoidally varying at u= 2~f angular frequency

and the field amplitude is modulated by a slowly varying

function F(t) (time-dependence F(t)exp (jot)). Now we

write E(r, t)= F(t)G(r, ~)exp(jat), where G(r, a) is the

electric field originated in the body by a monochromatic

excitation [12]. Moreover, if the induced thermal distribu-

tions do not vary appreciably within a period T= l/f, it is

legitimate to substitute A( r, t)with its mean value over one

period:

A(r, t)sfiF2(i)l G(r, @)12=P,(@(r)/J (15)

where R(r) = u IG( r, o)12/(2P0 ) is the ratio between the

power dissipated by the monochromatic excitation in the

unitary volume of the body and the power PO of the

monochromatic source; P~(t ) = POF2( t ) (t> O) is the actual

mean power of the source. If a similar factorization holds

for o=, i.e., oC(r, t)= Q(r)VC(t) (Q is a geometrical form

factor and i?c(t)= ile+ VC(t) the temperature of some heat

sink external to the body), then (12) and (13) become

sml(~)=fmlps(t) %t2(~)=%n2K(t) (16)

where

%,=~~)(r)f.(r)dv ~.2=Kh~ Q(r)f.(r)dS.
s’

(17)

Finally, substitution of (16) into (14) gives, taking (3) and

(7) into account

@(r, t)=$ (r)+ j f~(r)(e-p”’u~
~=1 \

J )+ }-@”(’-’)[~mlps( 7)+~m2K(7)l dr - (18)

Equation (18) is the formal solution which relates the

temperature distribution in the tissue to the two control

inputs: the microwave source power rate and the surface

cooling fluid temperature. Note that the thermal increase

as given by this procedure shows explicitly its dependence

on the various time constants ~~ = 1//3~ of the system, as

shown by (18). Note also that ~~ decreases as m increases.

By defining the following column vectors v(t)=[em(t)],

~(t)=[~m(t)],~1‘[smll, S2 ‘[Fm2] and the matrix A~~ =
– &8~n (8~. is the Kronecker symbol), (10) can be written

in the following form, which is familiar in system theory:

ti=Az)(t)+~, I’s(t)+F2vc(t), v(o) = u. (19)
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Fig. 1. Temperature O(x, r) versus x for various values of ~ (minutes)
and for three different variations with time of inputs.

The adopted formalism seems to be appropriate whenever

use of pertinent techniques and results of system theory is

envisaged, as is in the present case in which the temper-

ature control inmicrowave hyperthermiais of concern.

In the particular case where P. and VCare constant say ~

and ~, respectively (this case corresponds to step variations

of both inputs at t= O), (19) has the solution

o(t)= q5(t)u+[l-@(t)]oF (20)

where

@(t)=eA’

oF=– A–*(~1~+S2J7)

A;: = -%ln/&l. (21)

OF has components which are related to the final tempera-

ture distribution OF(r) by

tiF(r)yF (r)+fT(r)oF (22)

where j ‘(r) denotes the row vector [fro(r)].

NUMERICAL EXAMPLE

An example of application of the above formulation

follows. Let us consider the case of a homogeneous slab

O<x <d, simulating a living tissue. The region outside the

, slab is at temperature 8.. For t> O the slab is irradiated by

a linearly polarized uniform plane wave at u angular

frequency which impinges normally on the plane x = O and

carries the mean power density P~(t ); moreover, a fluid at

temperature ~C(t) is forced uniformly past the same surface.

For this structure the expressions of the natural temper-

ature distribution F(x), of the normalized eigenfunctions

jJx), and of the power density dissipated by a stationary

microwave excitation are given in [9] and will not be

repeated here. As in [9] we choose the following numerical

values for the various geometrical and physical parameters:

f=ti/(2n)=2450 MHz; d=O.1 m; I?, =28°C; C/Co =47

(relative dielectric constant); u= 2.21 S/m; p = 1070 kg/m3;

C=O.75 kcal/(kg°C); K= O.12X 10’3 kcal/(m” S°C); H=
0.28 X 10-2 kcal/(m2”s0C); &h = 37°C; AO = 0.2

kcal/(m3. s); B=O.13 kcal/(m3. s°C).

We assume that the temperature of the tissue be raised

and maintained above a prescribed level @~(42.5 “C) within

the region O< x < x~ <d. On the other hand, bearing in

mind an actual clinical application, it is important that the

tissue temperature does not increase exceedingly above OK.

From (21) and (22) by imposing &F(0)=~F(x~) =42.5”C,

we find the levels ~ and ~ which produce the lowest

thermal increase above OK. Numerical computations have

been carried out for x~ = 0.03 m and the results are shown

on diagrams of Figs. 1– 3. In Fig. 1 $(x, t) is plotted versus

x for various values of time according to three different

time variations of the inputs which are shown on diagrams

of Fig. 2 ( F’,( t), mean power density carried by the imping-

ing wave), and Fig. 3 ( 8C(i ), temperature of the fluid on the

surface x= O), respectively. a, b, and c of Fig. 1 refer to the

corresponding inputs marked with a, b, c in Figs. 2 and 3.

Fig. l(a) shows the transient thermal response from the

natural distribution (t< O) to the final distribution (t+ co)

for step variations of both inputs at t= 0. The final temper-

ature is reached in more than two hours. When a speeding

up of heating is desired, the power density carried by the

impinging wave is usually increased at the beginning of

treatment. In this case the temperature at convenient loca-

tions is continuously monitored and the microwave power
is progressively reduced as the desired final temperatures

are approached. The diagrams of Fig. l(b) show the ther-

mal response when the mean power density follows the

simple law: P$(t)=f+yPIo~(x~ )–O(x~, t)], t~O, where

Yp =0.6 W/(m20C). In this way the prescribed temperature

is reached after about 30 min in the region of interest.

However, the temperature near the surface x= O reaches
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Fig. 2. Variations with time of the mean power density P.(r) carried by

the impinging plane wave which produce the thermaf responses of
Fig. 1, No microwave radiation for t<O. i
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Fig. 3. Variations with time of the temperature of the cooling fluid
which produce the thermaf responses of Fig. 1. No forced surface
cooling for t< O.

levels which are clearly excessive. To reduce such a noxious

overheating, in turn the temperature of the cooling fluid

can be varied to counteract this effect. In our example, the

fluid temperature is varied according to t3C(~)= 0= + ~+

yc[il~(0) – 0(0, t)], t >0, where yC= 3. The diagrams of Fig.

l(c) refer to this case and show how the temperature

overshot is reduced.

In the computation the series (18) has been truncated

after thirty terms. If forty terms were retained, the change

in the calculated temperatures would have been less than

0.05”C.

CONCLUSION

The problem of the temperature distribution inside

simulated living tissues due to time-varying microwave

irradiation and surface cooling has been considered. A

series expansion solution of this problem has been worked

out by means of a variational formulation of the heat-

conduction problem. This procedure allows transient phe-

nomena in irradiated bodies to be treated as the dynamic

response of linear infinite-dimension systems. A numerical

example is given to point out some practical advantages of

this approach.
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