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Time-Dependent Microwave Heating and
Surface Cooling of Simulated Living Tissues

FERNANDO BARDATI, MEMBER, IEEE

Abstract— The equation of conduction of heat in a model of living
tissues is solved in the case of time-dependent electromagnetic heating and
surface cooling. This approach allows thermal transient phenomena in the
tissue to be treated as the dynamic behavior of a linear infinite-dimension
system. This approach is appropriate when the tissue temperature increase
must be controlled. Some results are given in a numerical simulation.

INTRODUCTION

ECENT ADVANCES in nonperturbing thermome-

try allow one to attain temperature control of tissues
subjected to electromagnetic heating in hyperthermia for
cancer treatment [1]-[3]. Heating is controlled by varying
the power dissipation rate in the tissue and by regulating
the temperature or the velocity of a cooling fluid [4] forced
past the surface of the body. The temperature distribution
inside the irradiated body is related to the inputs (e.g., the
microwave source power rate and the cooling fluid temper-
ature) by the differential equation of heat conduction and
appropriate boundary conditions. Usually a cooling func-
tion is added to the standard heat equation in order to take
into account the internal cooling effect of the blood circu-
lation in vivo. Transient solutions of this equation with
microwave induced heat source are available in the litera-
ture. Mainster et al. [5], Chan et al. [6], Priebe and Welch
[7] calculated the step response in biological bodies of
various geometries by the method of finite differences. In
studies on conversion of electromagnetic to acoustic energy
by volume heating, Lin [8] estimated the temperature in-
crease with time in a spherical body of biological matter
irradiated by plane waves of pulsed microwave energy;
conduction and cooling effects were neglected in his analy-
sis. In addition the time-dependent solution for a half-space
of biological matter was given by Foster er al. [4] and a
variational formulation, suitable for numerical computa-
tions in complicated geometries, was presented in [9].

To our knowledge, however, solutions of the modified -

heat-conduction equation, when both the microwave heat-
ing and the surface cooling are time varying, seem to be
lacking in the open literature. Moreover, in order to control
the temperature increase with time in irradiated bodies, a
formal solution of the heat-conduction equation, which
relates the inputs to suitably chosen outputs (e.g., tempera-
tures at some internal points), is advisable. In this note this
relation is worked out by means of a variational formula-
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tion of the heat-conduction problem and of simplifying
assumptions. A simple application of the theory is also
given to show how some practical advantage can be ob-
tained by the use of time-varying microwave heating and
surface cooling.

MATHEMATICAL MODEL AND FORMULATION

The equation of conduction of heat in a homogeneous
volume ¥ of tissue is [4], [9], [10]

K v *—pCO—B[d(r,1)—3,(r)] = —Ay(r)—A(r,1)
(1)

where #(r,t) is the unknown temperature, #,(r) is the
temperature of the arterial blood entering the tissue, 4,(r)
is the metabolic heat generation per unit volume, A(r, t) is
the electromagnetic power dissipated in the unit volume of
tissue. Here K (thermal conductivity), p (density), C
(specific heat), and B are constant coefficients. The term
B(9#,—%) on the left-hand side accounts for the cooling
effect due to blood flow. The relation of B to primary
physical and physiological characteristics of living tissues is
discussed in [10].

The region outside ¥ is assumed at a constant environ-
mental temperature 4,; moreover a cooling fluid at temper-
ature 3 (r, t) is supposed to be forced on a portion S” of
the surface S of the body. By assuming linear heat transfer
at S [11], the boundary conditions are '

K v o-n+H(9—9,)=0,
KV &-n+H(9—9,)=0, @)

where n is the outward normal and H is a constant overall
surface heat transfer coefficient. Equation (2) differs from
the boundary condition of [10] in that a skin evaporation
term is ignored; moreover, the black-body radiation heat
loss is accounted for by simple increase of the convective
surface heat transfer coefficient. The last approximation is
sufficiently adequate only if the temperature differences in
(2) are small enough [11].

Since in this model 4,, #,, and 4, are assumed to be
time independent, it is advantageous to let

&(r,t)=9 (r)+o(r,1)
where & and v are solutions of the following equations:
vH-b(8—9,)=—a,(r), iV (4a)
v -n+h(d-9,)=0, (4b)

on S’
onS—S§’
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v2—(1/k)6—bv=—a(r,t), inV (5a)
vo-n+h(v—uv,)=0, on §’
v o-n+hv=0, onS—S" (5b)

and ay(r)={Ay(r)+ B[3,(r)— 9. ]}/K; a(r,t)=
A(r,t)/K;v (r,t)=98.(r,t)— 1%, b*=B/K,
h=H/K; 1/k=pC/K. _

The natural temperature #(r) is that of the tissue in
absence of both electromagnetic heating and forced surface
cooling which are taken into account by the thermal in-
crease v(,rt). Formal solutions for #(r) are given in [9].
Here we are primarily interested in solving (5a), (5b) for
t=0 subject to the initial condition

o(,r0)=u(r) (5¢)
where the initial temperature u(r) is the result of former
(r<<0) thermal events: u(r)=%(r0)—3¥(r). a(,r¢t) and
v{,rt) are assumed to be continuous for >0, It is easy to
show that v is an extremal of the following functional:

FIfV[Vv-VD—F(l/x) 8(;)[2)

+ b2 2—2av] dv+ fho2 ds
S

~2f ho,0dS. (6)
.

Now let

0

o(r.1)= 2 0,(1)f(r)

m=1

(7)

=]

u(r)= 2ty f(r)

m=1

(8)

where f, is the mth orthonormal eigenfunction of the
following self-adjoint positive-definite eigenvalue problem:

Vi+Nf=0in¥V v f-n+hf=0o0nS. %)
XS

As is known, the set of these eigenfunctions is complete.
The stationarity of F with respect to v,(¢), m=1,2,---,
gives

1jm—f_ﬁmvm(t):Sml(l‘)-'—st(t) (10)
where

B, =x(X, +b%) (11)

sml(t)Z:cha(r,t)fm(r)dV (12)
smz(t)':lchfs’vc(r, £)f,(r)ds. (13)

By taking (5c) and (8) into account, the first-order linear
system (10) has the solution

o, (t)=e Fniy, + jo e Bt 5,1(7) +5,,5(7)] dr.
(14)

Substitution of (14) into (7) yields the thermal increase
for given electromagnetic heating and forced surface cool-
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ing. Note that A(r, t)=Ka(r, t) must be evaluated before
calculating the volume integral (12). 4=0o|E(r,1)|*/J is
the instantaneous power dissipated in the unitary volume
of tissue, where o is the effective electrical conductivity of
the tissue, J is the mechanical equivalent of heat, and E is
the electric field which is originated inside the body by
microwave time-varying irradiation. Therefore, in order to
evaluate 4, a time-varying electromagnetic field solution is
needed. Due to the complexity of the problem, few solu-
tions of this type are available in the literature. However,
an approximate expression of A can be used in the particu-
lar but relevant case where the electromagnetic irradiating
field is sinusoidally varying at w=2#f angular frequency
and the field amplitude is modulated by a slowly varying
function F(¢) (time-dependence F(¢)exp(jwt)). Now we
write E(r, 1)~ F(1)G(r, w)exp(jwt), where G(r, ) is the
electric field originated in the body by a monochromatic
excitation [12]. Moreover, if the induced thermal distribu-
tions do not vary appreciably within a period T=1/f, it is
legitimate to substitute A(r, ¢t) with its mean value over one
period:

A(r,t)m%Fz(t)|G(r,w)|2=Ps(t)R(r)/J (15)

where R(r)=0|G(r,w)|?/(2P,) is the ratio between the
power dissipated by the monochromatic excitation in the
unitary volume of the body and the power F, of the
monochromatic source; P(t)=P,F*(t) (t>0) is the actual
mean power of the source. If a similar factorization holds
for v, ie., v(r,t)=Q(r)V(t) (Q is a geometrical form
factor and 4,(¢)=1%, + V(¢) the temperature of some heat
sink external to the body), then (12) and (13) become

Sat)=5,0P(1)  s5,0()=5,,.V (1) (16)

where
=g JROLVV 5o =xh ] 0(1)1,(r)ds.
(17)

Finally, substitution of (16) into (14) gives, taking (3) and
(7) into account

8(r, )= (r)+ ilfm(r){e"ﬁmtum

+ /0 ‘e B[ 5,, PAT) 5,V (1)] dT}. (18)

Equation (18) is the formal solution which relates the
temperature distribution in the tissue to the two control
inputs: the microwave source power rate and the surface
cooling fluid temperature. Note that the thermal increase
as given by this procedure shows explicitly its dependence
on the various time constants 7,, =1/8,, of the system, as
shown by (18). Note also that 7,, decreases as m increases.
By defining the following column vectors o(¢)=[v,(1)],
u(t)=[u, (D], § =[s,.], §,=[5,,] and the matrix A, =
= B,0mn (8., 1s the Kronecker symbol), (10) can be written
in the following form, which is familiar in system theory:

6=Ao(1)+5,P(1)+5,V(1), o0)=u. (19)
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and for three different variations with time of inputs.

The adopted formalism seems to be appropriate whenever
use of pertinent techniques and results of system theory is
envisaged, as is in the present case in which the temper-
ature control in microwave hyperthermia is of concern.

In the particular case where P, and V, are constant say P
and V, respectively (this case corresponds to step variations
of both inputs at £=0), (19) has the solution

o(2)=¢()u+[1—¢(1)] vf (20)

where
o(1)=eM ,
vop=—A"1(5,P+5,V)
A= =8 /B (21)

v has components which are related to the final tempera-
ture distribution &.(r) by

‘9F(’)’.—‘5 (r)+f7(r)og
where f7(r) denotes the row vector [ £,(r)].

(22)

NUMERICAL EXAMPLE

An example of application of the above formulation
follows. Let us consider the case of a homogeneous slab
0<x<d, simulating a living tissue. The region outside the
_slab is at temperature 3,. For £>0 the slab is irradiated by
a linearly polarized uniform plane wave at w angular
frequency which impinges normally on the plane x=0 and
carries the mean power density P,(¢); moreover, a fluid at
temperature ¢ (¢) is forced uniformly past the same surface.
For this structure the expressions of the natural temper-
ature distribution #(x), of the normalized eigenfunctions
fn(x), and of the power density dissipated by a stationary
microwave excitation are given in [9] and will not be
repeated here. As in [9] we choose the following numerical
values for the various geometrical and physical parameters:

f~w/(2m)=2450 MHz; d=0.1 m; 94,=28°C; ¢/¢, =47
(relative dielectric constant); 0=2.21 S /m; p=1070 kg /m’;
C=0.75 kcal /(kg°C); K=0.12X10 3 kcal /(m-s°C); H=
0.28 X 102 kcal/(m?-s°C); &, =37°C; A4,=0.2
kcal /(m*-s); B=0.13 kcal /(m’-s°C).

We assume that the temperature of the tissue be raised
and maintained above a prescribed level ¢ (42.5°C) within
the region 0<<x<x,<d. On the other hand, bearing in
mind an actual clinical application, it is important that the
tissue temperature does not increase exceedingly above .
From (21) and (22) by imposing #(0)=3(x,)=42.5°C,
we find the levels P and ¥ which produce the lowest
thermal increase above 4. Numerical computations have
been carried out for x, =0.03 m and the results are shown
on diagrams of Figs. 1-3. In Fig. 1 #(x, ¢) is plotted versus
x for various values of time according to three different
time variations of the inputs which are shown on diagrams
of Fig. 2 (P(¢), mean power density carried by the imping-
ing wave), and Fig. 3 (#,(2), temperature of the fluid on the
surface x=0), respectively. a, b, and ¢ of Fig. 1 refer to the
corresponding inputs marked with a, b, ¢ in Figs. 2 and 3.

Fig. 1(a) shows the transient thermal response from the
natural distribution (#<<0) to the final distribution (7 o0)
for step variations of both inputs at r=0. The final temper-
ature is reached in more than two hours. When a speeding
up of heating is desired, the power density carried by the
impinging wave is usually increased at the beginning of
treatment. In this case the temperature at convenient loca-
tions is continuously monitored and the microwave power
is progressively reduced as the desired final temperatures
are approached. The diagrams of Fig. 1(b) show the ther-
mal response when the mean power density follows the
simple law: Ps(t)tls—i—yp[ﬁF(xA)—ﬁ(xA, 1)), t>0, where
Y, =06 W/ (m?°C). In this way the prescribed temperature
is reached after about 30 min in the region of interest.
However, the temperature near the surface x=0 reaches
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Fig. 2. Variations with time of the mean power density P,(¢) carried by
the impinging plane wave which produce the thermal responses of
Fig. 1. No microwave radiation for <<0. i
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Fig. 3. Variations with time of the temperature of the cooling fluid
which produce the thermal responses of Fig. 1. No forced surface
cooling for 1<C0.

levels which are clearly excessive. To reduce such a noxious
overheating, in turn the temperature of the cooling fluid
can be varied to counteract this effect. In our example, the
fluid temperature is varied according to 9(1)=9,+ V+
Y [9£(0)— (0, ¢)], >0, where v, =3. The diagrams of Fig.
1(c) refer to this case and show how the temperature
overshot is reduced.

In the computation the series (18) has been truncated
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after thirty terms. If forty terms were retained, the change
in the calculated temperatures would have been less than
0.05°C.

CONCLUSION

The problem of the temperature distribution inside
simulated living tissues due to time-varying microwave
irradiation and surface cooling has been considered. A
series expansion solution of this problem has been worked
out by means of a variational formulation of the heat-
conduction problem. This procedure allows transient phe-
nomena in irradiated bodies to be treated as the dynamic
response of linear infinite-dimension systems. A numerical
example is given to point out some practical advantages of
this approach.
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